Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption

Identifieur interne : 003424 ( Main/Repository ); précédent : 003423; suivant : 003425

Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption

Auteurs : RBID : Pascal:11-0160916

Descripteurs français

English descriptors

Abstract

State of the art ZnO/CdS/Cu(In,Ga)Se2 (CIGS) solar cells use bandgap grading, requiring special tools for the analysis of the experimentally obtained characteristic curves. We develop an analytical model for the photon flux and internal quantum efficiency in double-graded bandgap solar cells, considering the effects of sub-bandgap absorption and grading-dependent carrier collection properties. The short-circuit photocurrent density is calculated as a function of carrier diffusion length and front/back bandgaps, establishing optimum design criteria under solar operation. Even for a diffusion length of only 0.5 μm in a 3-μm-thick absorber, and no contribution from the CdS layer, an optimum back bandgap of 1.35 eV is found, yielding short-circuit current densities of 36.0 (33.5) mA cm-2 for a front bandgap of 1.05 (1.68) eV. Furthermore, simplifications to the model for specific energy ranges allow to extract the Urbach Energy EU and the minimum bandgap Eg,min in the grading profile from experimental IQE curves. Finally, our model fits IQE measurements of 18% efficient CIGS solar cells, yielding values of EU between 31 and 41 meV, minimum bandgaps Eg,min between 1.10 and 1.16 eV, and diffusion lengths close to 0.5 μm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0160916

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption</title>
<author>
<name sortKey="Troviano, M" uniqKey="Troviano M">M. Troviano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Argentine</country>
<wicri:noRegion>8300 Neuquén</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taretto, K" uniqKey="Taretto K">K. Taretto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Argentine</country>
<wicri:noRegion>8300 Neuquén</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0160916</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0160916 INIST</idno>
<idno type="RBID">Pascal:11-0160916</idno>
<idno type="wicri:Area/Main/Corpus">003412</idno>
<idno type="wicri:Area/Main/Repository">003424</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Analytical method</term>
<term>Cadmium sulfide</term>
<term>Copper selenides</term>
<term>Diffusion length</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Modeling</term>
<term>Optimal design</term>
<term>Quantum yield</term>
<term>Quaternary compound</term>
<term>Short circuit currents</term>
<term>Solar cell</term>
<term>State of the art</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rendement quantique</term>
<term>Cellule solaire</term>
<term>Etat actuel</term>
<term>Méthode analytique</term>
<term>Courant court circuit</term>
<term>Longueur diffusion</term>
<term>Conception optimale</term>
<term>Matériau absorbant</term>
<term>Modélisation</term>
<term>Oxyde de zinc</term>
<term>Sulfure de cadmium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>ZnO</term>
<term>CdS</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">State of the art ZnO/CdS/Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells use bandgap grading, requiring special tools for the analysis of the experimentally obtained characteristic curves. We develop an analytical model for the photon flux and internal quantum efficiency in double-graded bandgap solar cells, considering the effects of sub-bandgap absorption and grading-dependent carrier collection properties. The short-circuit photocurrent density is calculated as a function of carrier diffusion length and front/back bandgaps, establishing optimum design criteria under solar operation. Even for a diffusion length of only 0.5 μm in a 3-μm-thick absorber, and no contribution from the CdS layer, an optimum back bandgap of 1.35 eV is found, yielding short-circuit current densities of 36.0 (33.5) mA cm
<sup>-2 </sup>
for a front bandgap of 1.05 (1.68) eV. Furthermore, simplifications to the model for specific energy ranges allow to extract the Urbach Energy E
<sub>U</sub>
and the minimum bandgap E
<sub>g,min</sub>
in the grading profile from experimental IQE curves. Finally, our model fits IQE measurements of 18% efficient CIGS solar cells, yielding values of E
<sub>U</sub>
between 31 and 41 meV, minimum bandgaps E
<sub>g,min</sub>
between 1.10 and 1.16 eV, and diffusion lengths close to 0.5 μm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>95</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TROVIANO (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TARETTO (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Electrotecnia, Universidad Nacional del Comahue-CONICET, Buenos Aires 1400</s1>
<s2>8300 Neuquén</s2>
<s3>ARG</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>821-828</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000191978550030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0160916</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>State of the art ZnO/CdS/Cu(In,Ga)Se
<sub>2</sub>
(CIGS) solar cells use bandgap grading, requiring special tools for the analysis of the experimentally obtained characteristic curves. We develop an analytical model for the photon flux and internal quantum efficiency in double-graded bandgap solar cells, considering the effects of sub-bandgap absorption and grading-dependent carrier collection properties. The short-circuit photocurrent density is calculated as a function of carrier diffusion length and front/back bandgaps, establishing optimum design criteria under solar operation. Even for a diffusion length of only 0.5 μm in a 3-μm-thick absorber, and no contribution from the CdS layer, an optimum back bandgap of 1.35 eV is found, yielding short-circuit current densities of 36.0 (33.5) mA cm
<sup>-2 </sup>
for a front bandgap of 1.05 (1.68) eV. Furthermore, simplifications to the model for specific energy ranges allow to extract the Urbach Energy E
<sub>U</sub>
and the minimum bandgap E
<sub>g,min</sub>
in the grading profile from experimental IQE curves. Finally, our model fits IQE measurements of 18% efficient CIGS solar cells, yielding values of E
<sub>U</sub>
between 31 and 41 meV, minimum bandgaps E
<sub>g,min</sub>
between 1.10 and 1.16 eV, and diffusion lengths close to 0.5 μm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Etat actuel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>State of the art</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estado actual</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Longueur diffusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Diffusion length</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Longitud difusión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Conception optimale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optimal design</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Concepción optimal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>101</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003424 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003424 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0160916
   |texte=   Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024